

Grow the MNT technician workforce by fostering
1.Coordinated National Approach
2.Professional Development
3.Outreach, recruitment and retention
4.Industry/Education alliance

NSF Award DUE 2000281 Micro Nano Technology Education Center

Greg Kepner

Frank Reed

August 5, 2020

Welcome

Greg Kepner Co-PI Micro Nano Technology Education Center

Frank Reed PI Developing Photonics Education in Iowa's Rural Secondary Schools

Presentation Information

What is photonics?
What are some photonics applications?
What about photonics education?
What do photonics technicians do?
Where do photonics technicians work?
How can I attend a photonics workshop?
How do lasers work?
Are lasers safe?

NSF

Where can I find more photonics resources?

Photonics – The Technology of the Future

The 21st century will depend as much on photonics as the 20th century depended on electronics.

Photonics – What is it?

The science and technology of generating, manipulating, and detecting particles of light.

Photonics – What is it?

The science and technology of generating (lasers), manipulating (optics), and detecting (electro-optics) particles of light (photons).

Photonics – Areas of Applications

Manufacturing Medical Military Communication Information Technology Science/Research Entertainment

Applications of Lasers in Manufacturing

Additive Manufacturing Micromachining Photolithography **Cleaning/Rust Removal** Heat/Surface Treatment Alignment **Invisible Fencing for Safety** Deposition

Laser Cutting, Welding, Drilling, and Cladding

Laser Micromachining

Laser Additive Manufacturing (3D Printing)

Multiple L. A.M. Processes Available

Variety of Materials Used

Laser Micromachining

CW – Continuous Wave ns – nanosecond 1x10 ⁻⁹s ps – picosecond 1x10 ⁻¹²s fs - femtosecond 1x10 ⁻¹⁵s

Applications of Lasers in the Medical Field

Stents

LASIK (laser eye surgery)

Knee Replacement Part made by LAM Process

Spine Implant Part made by LAM Process

Bone Replacement Parts made by LAM Process

Applications of Lasers in the Military

Range Finding

Laser Sights

Target Designator

Sensor Jamming or Destruction

Missile Countermeasures

Directed Energy Weapons

Strategic Defense Initiative

Non-RF Communications

Target Designator Application

Applications of Lasers in Information Technology

Optical Data Transmission Optical Data Storage Optical Fiber Communications Free-space Optical Communications Underwater Communications Laser Printing

Applications of Lasers in Metrology

Interferometry LIDAR (Light & Radar) Laser Scanners Optical Sampling Optical Clocks Fiber-optic Sensors

Applications of Photonics in Science/Research

Photochemistry
Laser Cooling
Nuclear Fusion (NIF)
Atmospheric Remote Sensing
Spectroscopy
Holographic Techniques

Applications of Photonics in Entertainment

Laser Light Shows Outdoor Projections Holography Special Lighting Effects

IHCC Laser & Optics Technology Program

Laser & Optics Enrollment from 2015 - 2019

The Skills Gap is Widening in America

At a time of record youth unemployment in America, employers struggle to find skilled entry-level talent through conventional hiring practices.

40%

5.8 million are out of seeking

5.8 million young adults are out of school and seeking work

5.8M

40% of employers cite lack of skills as the main reason for job vacancies 2/3 of employers report difficulty filling open positions

2/3

Hicro Hesso Technology

Source: Ottumwa Courier

Photonics Technician Job Description

Photonics Technician – Build, install, test, or maintain optical or fiber optic equipment such as lasers, lenses, or mirrors using spectrometers, interferometers, or related equipment.

(O*NET 17.3029.08 - Bureau of Labor Statistics) 2019 median wages - \$62,990

Laser & Optics Opportunities and Placement

Average of 5 or more job opportunities per graduate
Placed in 40 states & Germany & Norway
Placed at 140 companies
"Border to Border and Coast to Coast"
Job placement over 95%
2020 average salary: \$62.8k + benefits

Laser & Optics Placement from 2015 - 2020

Laserage Technology	Texas Instruments	VitalDyne
Daylight Solutions	Rudolph Technologies	IAM AgTech
Access Laser	LSP Technologies	Mazak
L3 Technologies	Lawrence Livermore National Lab	Nuburu
Lumenis	MC Machinery	IDEX
RPMC, Inc.	Particle Measuring Systems	Medtronic
Preco, Inc.	Boston Scientific	RP Support
BAE Systems	Sightpath Medical	Forro Energy
Adapt Laser	Laser Welding Solutions	

Fundamentals of Photonics Workshop
 Laser Material Processing Workshop

I have been impressed with the urgency of doing. Knowing is not enough; we must apply. Being willing is not enough; we must do.

Fundamentals of Photonics Workshop

Using MPEC Kits

Working on a Laser System in lab

Working with the fiber laser

Working on lab activities

Using MPEC Kits

Working in the laser lab

Working on a PIMicos System

Illinois Kansas Iowa

TRUMPF TruLaser Station 5005

Student working with laser welding system

Epilog Helix 75 Watt 24x18 Laser Marking/Etching System

LMP workshop attendees

Adjusting the parts fixture

Observing the laser welder

Laser welding camera view

the program parameters

Observing a laser welding process

Loading parts to be welded

part

Participants working on laboratory activities

Stretch Time

LASER as an Acronym

• *L* ight

- A mplification by
- **S** timulated
- **E** mission of

R adiation

Photonics : Brief History

1917: Theory of stimulated emission developed by Albert Einstein.

1953: First device to make use of the stimulated emission process worked in the microwave region (15 mm) of the electromagnetic radiation spectrum.

1958: Speculation about the possibility of "optical masers".

1960: The first working laser was a ruby (694 nm). Only 60 years.

Produced intense pulses of red laser light.

1879: electricity was discovered; 141 years.

1960/1962: Followed quickly by the Helium-Neon laser which produced a continuous beam.

1962 – 2020: Exponential explosion of technology and applications

Photonics: Properties of Laser and Optics

Lasers Wavelength Monochromatic (one color) Directional (collimated) Coherent Power Pulse Rate

Photonics: Properties of Laser and Optics

Types of Optics Lenses Mirrors Filters Plus many others

Photonics: Properties of Laser and Optics

S.T.A.R.R. (All materials) Scatter Transmit Absorb Reflect Refract

Nature of Light

Electromagnetic Spectrum

Characteristics of Laser Light

MONOCHROMATIC DIRECTIONAL COHERENT

The combination of these three properties makes laser light focus 100 times better than ordinary light.

This means that laser light can be concentrated on the retina of the eye by as much as 100 times more than ordinary light. Thus, even relatively low levels of laser light can produce significant eye hazards.

How a Laser Works

- The Active Medium contains atoms which can emit light by stimulated emission.
- The Excitation Mechanism is a source of energy to excite the atoms to the proper energy state.
- The Feedback Mechanism (HR & OC) reflects the laser beam through the active medium for amplification.

Laser Diode Pointers

Laser Diode Pointers

Typical Red Laser Pointer

Comparison of Red and Green Laser Pointer Complexity

HeNe (helium neon) Laser

Hughes Style One-Brewster HeNe Laser Tube Mounted in Test Fixture

Nd:YAG (neodymium: yttrium aluminum garnet) Laser

CO2 (carbon dioxide) Laser

Fiber Laser

- Pump diode modules pump the light radiation into the active fiber
- Optical active fiber with a doped core (ytterbium) and couble cladding, where the pumped light excites the core

Transport optical fiber bringing out the power from the module

Laser Safety: Causes of Laser Accidents

Studies of laser accidents have shown that there are usually several contributing factors. The following two are the most common causes of laser injuries:

- 1) Inadequate training of laser personnel
- 2) Failure to follow approved standard operating procedures or safe work practices

Laser Eye Exposure

Laser Beam Injuries

High power lasers can cause skin burns.

Severe eye injuries resulting in permanent vision loss.

Laser Safety Eyewear

Laser safety eyewear is available in glass or plastic for all laser wavelengths. The required Optical Density of the eyewear is determined in the hazard analysis performed by the LSO (Laser Safety Officer).

Eye Safety

Most laser eye injuries have occurred when the person was not wearing laser safety eyewear.

Laser Safety Eyewear does not make the wearer invulnerable.

It is never safe to stare into a laser beam, even if wearing laser protective eyewear.

The greatest risk of eye injury occurs when near IR lasers are operated with the beam exposed.

Eyewear should always be worn when a near IR class 3b or class 4 beam is accessible.

Laser Safety Eyewear Labels

All eyewear must be labeled with wavelength and optical density.

Laser Safety Classification (ANSI Z136.1)

Class 1 Class 1M Class 2 Class 2M Class 3R Class 3B Class 4

Photonics Websites of Interest

www.spie.org The International Society for Optics and Photonics
www.photonicssociety.org IEEE Photonics Society
www.osa.org The Optical Society
www.lia.org The Laser Institute of America
www.laser-tec.org Center for Laser and Fiber Optics Education (NSF)
www.lightourfuture.org National Photonics Initiative

Contact Information

Greg Kepner at gregkepner1@gmail.com

Frank Reed at frank.reed@indianhills.edu

Disclaimer: "This material is based upon work supported by the National Science Foundation under Grant No.2000281. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

